
An Approach to the Pervasive Formal Specification
and Verification of an Automotive System

Status Report

Tom In der Rieden∗

Dept. of Computer Science
Saarland University

P.O. Box 151150
66041 Saarbrücken

Germany

idr@cs.uni-saarland.de

Steffen Knapp
Dept. of Computer Science

Saarland University
P.O. Box 151150

66041 Saarbrücken
Germany

sknapp@wjpserver.cs.uni-saarland.de

ABSTRACT
The Verisoft project aims at the pervasive formal verification
of entire computer systems. In particular, the verification of
functional and timing properties of the Automotive System is
attempted. This is a distributed system, whose components
consist of hardware (processor and devices), a real-time op-
erating system, and applications. In this paper we give an
overview of the system architecture and its industrial rele-
vance. We will discuss in detail the model layers from the
hardware up to a computational model for concurrent user
processes interacting with a generic microkernel written in
C. This is work in progress, so we will report on its current
status, our goals and the next steps we want to take.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Modeling techniques; Reliability, availability, and
serviceability

General Terms
Design, Reliability, Verification

1. INTRODUCTION
Back in the days, a car merely consisted of pure mechan-

ical parts. Electronic components could only be found in a
very few spots and their complexity could be handled by an
average mechanic. Times have changed since then. The cus-
tomer’s desire for more luxury options, the need to decrease

∗Work partially funded by the German Federal Ministry of
Education and Research (bmb+f) in the framework of the
Verisoft project under grant 01 IS C38.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMICS’05,September 5–6, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-148-1/05/0009 ...$5.00.

fuel consumption going hand in hand with the need to de-
crease pollutant emissions have led to an increasing number
of electronic devices even in a middle-class car.

The sheer complexity of these systems has reduced the
coverage of tests to a minimum and made this technology
unfeasible even for current designs. We think that the for-
mal specification and verification of complex systems is the
only way out of this dilemma. In cooperation with BMW
Group AG we have decided to develop and verify an imple-
mentation of the eCall Emergency Call as proposed by the
EU Commission [8, 27] in the Verisoft project [26].

We have modeled the scenario as a distributed system
in AutoFOCUS [28] and Isabelle/HOL [18] and are going
to show its functional and timing correctness. In order to
achieve a maximal pervasiveness and by this to minimize the
chance for an undiscovered error, we have developed a model
stack from the hardware gate level up to the state transition
diagrams in AutoFOCUS. The correctness of the system will
be shown by simulation theorems between adjacent layers.

This project is work in progress and by far not complete.
Nevertheless, in this writing we will give a detailed system
description with the underlying standards and specifications
from automotive industry (Sect. 3.2). In Sect. 4 we give
an introduction into the lower half of our model stack. In
detail, we will discuss models for assembler programs and
C programs (Sect. 4.1 and Sect. 4.2) before we introduce a
new computational model for user tasks interacting with a
microkernel (Sect. 4.3). In Sect. 4.5 we outline a OSEKtime
Operating System like concrete implementation of a micro
kernel.

2. MOTIVATION
The introduction of the CAN-Bus by Bosch for mass-

production in the early nineties initiated the rapid growth of
the electronic share in cars [11]. In 2000, about 20 percent
of a car was electronic components. According to Merker
Management Consulting, this share will grow to 35 percent
in 2010. The situation is even worse, since most control
units will communicate and interact with each other. For
example, the electronic system of the recent BMW 7 series
(E65) consists of five bus systems, which interconnect 45
to 75 electronic control units (ECUs) and transport about
2500 signals. Nevertheless, about 90 percent of all innova-

tions in cars are direct or indirect results of new software
and electronic components. The market volume for auto-
motive software is expected to rise from 25 billion Euros in
2000 to 100 billion Euros in 2010.

Since one modern control unit already consists of soft-
ware and hardware, their combination into highly interac-
tive and dependent distributed systems leads to even greater
complexity and bigger difficulty in design and integration.
Latest statistics show, that in 1998 45.2 percent of all break-
downs were due to electrical and electronic problems. This
number rose to 49.6 percent in 2001 and is still increasing
[6]. About 80 percent of these failures are due to software
problems. There are multiple reasons:

• Specifications are ambiguous, insufficient, or wrong (or
all together).

• Constructions and implementations do not meet spec-
ifications.

• Components are manufactured by different suppliers
and do not interact correctly.

Unfortunately, most of the occurring errors do not come up
systematically, but only from time to time under a priori
unknown and non-reproducible circumstances. Due to the
sheer amount of cases, testing is often restricted to a very
small subset. So the chance of a design or implementation
error to stay undisclosed until the mass-production of a cer-
tain car model is very high.

Unlike with computers people are not willing to accept er-
roneous cars. Automobile companies do not only lose hun-
dreds of millions for call-backs, but also lose the trust of
their precious customers. This is especially the case for lux-
ury class car manufacturers.

Things can become even worse, as soon as safety critical
systems are concerned. Since these systems do not only rely
on correct functionality but have also real-time constraints,
the design again becomes more complex to handle. The
consequences of safety critical systems failures are usually
dramatic. Wrongful death and personal injuries caused by
such failures may cost car manufacturers not only reputa-
tion, but also money if they are found liable.

3. SYSTEM DESCRIPTION

3.1 eCall
eCall is a proposal of the EU’s eSafety group started in

December 2004. eSafety is a joint initiative of the Euro-
pean Commission (DG Enterprise and DG Information So-
ciety), industry and other stakeholders and aims at accel-
erating the development, deployment, and use of Intelligent
Integrated Safety Systems that use information and com-
munication technologies in intelligent solutions in order to
increase road safety and reduce the number of accidents on
European roads [7].

In the case of an accident, an automatic call to a pub-
lic safety answering point (PSAP) is initiated via a mobile
phone network and by using the Europe-wide E-112 emer-
gency call. Then, a message is transmitted to the PSAP
operator containing

• the time of the incident,

• exact location including direction of driving,

• a vehicle identification,

• a qualifier giving the severity of the incident, and

• the identification of the service provider.

Furthermore, the emergency call can be enabled manually by
the driver in case of a less severe incident. The EU commis-
sion is planning to make the installment of a built-in eCall
system compulsory for all new cars as from 2009. There are
several benefits expected from the Europe-wide introduction
of eCall:

• The response time to the accident is reduced by up to
50 percent.

• A reduction of accident severity in 15 percent of all
cases.

• 2,000 lives saved annually.

• Cost reduction of about 21 billion Euros in EU15 an-
nually.

3.2 System Architecture
For our exemplary implementation of eCall, we have set

up a scenario of independent electronic control units, which
are interconnected via a FlexRay bus [9]. All ECUs share
the same general layout: based on a hardware platform as
described in Sect. 3.3, we run a real-time operating system
like the one described in the OSEKtime Operating System
Standard [21]. Further details will be discussed in Sect. 3.4.
The topmost layer is built by the application software and
the FlexRay driver. We have split our implementation into
four independent parts: mobile phone, navigation system,
crash sensor and the emergency call implementation. Each
application runs on an ECU of its own. For more details see
Sect. 3.5.

3.3 The Hardware Layer
Within an ECU we choose a hardware layout (referred to

as a node) which is based on a common hardware design. On
the one hand this helps minimizing the production costs. On
the other hand only one design – up to the application layer
– has to be verified. The design includes a central processing
unit (CPU), random access memory (RAM), a timer and a
FlexRay communication controller (see Fig. 1).

App App

FlexRay

Controller
VAMP

FlexRay Bus

FTComOSEKtime

Figure 1: Single Node Details

Real-time operating systems are relying on tightly syn-
chronized clocks. In order to circumvent single points of fail-
ure (SPF) each node has its own local clock. This requires
a clock synchronization mechanism, which will be provided
by FlexRay.

The CPU serves as the hub within a node. In our sce-
nario, we use the VAMP (Verified Architecture Micropro-
cessor) [5] architecture, which includes a memory interface
for the RAM. The VAMP architecture is described in the
subsequent section in more detail.

External devices like the crash sensors or the mobile phone
as well as the timer and the FlexRay controller communicate
with the CPU through common I/O interfaces. Moreover
the timer supplies the FlexRay communication controller
with a notion of time.

The FlexRay controller serves two purposes. First it man-
ages the inter-node communication via the FlexRay bus.
Second it is responsible for cyclically supplying the timer
with a correction quantum which ensures the synchroniza-
tion of the clocks. The mechanism for doing so as well as
the architecture of the FlexRay communication controller
are described in Sect. 3.3.2.

3.3.1 Central Processing Unit (CPU)
The VAMP is a pipelined 32-bit RISC CPU with caches

and a full DLX instruction set [12, 16] including extensions
for single and double precision IEEE754 floating-point op-
erations, resulting in about 100 instructions. It supports
nested precise (and partially maskable) interrupts and makes
use of the Tomasulo Out-of-Order execution scheme. The
VAMP was developed at our institute in the years 1999 to
2003. The design has been synthesized on an FPGA and
makes up for about 1,500,000 gates. The VAMP has been
fully formally verified using the interactive theorem prover
PVS [5, 22].

We are currently working on an I/O extension for the
VAMP, which allows us to connect external devices, e.g. the
FlexRay controller, to the processor.

3.3.2 FlexRay
FlexRay is a communication system that will support the

needs of future in-car control applications. At the core of
the FlexRay system is the FlexRay communication proto-
col. The protocol provides flexibility and determinism by
combining scalable static and dynamic message transmis-
sion, incorporating the advantages of familiar synchronous
and asynchronous protocols [9].

Bus arbitration is based on rounds. This gives us cyclical
behavior and therefore deterministic message delays which
are crucial for real-time critical applications. One round
consists of several statically defined time slices, the so called
slots. In our scenario, all slots are of the same length. The
distribution of slots is equal in each round. The typical
length of one round is about 10 ms at a data rate of 10
Mbit/s.

Time

FlexRay Slot FlexRay Round

Figure 2: FlexRay Timing

Only one node can send per slot, whereas empty slots are
permitted, too. A message is of the form (msgid, msgval)
where msgid denotes a unique message id (also called mes-
sage type) and msgval gives the corresponding value. There
is a bijective mapping from slots to message types (note that
we omit empty slots here).

Send
Buffer

I/O
Controller

Receive
Buffer

Bus
Interface

CPU

Timer

FlexRay Bus

Figure 3: FlexRay Controller Details

All nodes need about synchronous clocks. Since quartzes
used in nodes are not precise enough, these clocks have to be
synchronized periodically. To deal with this matter, during
startup phase, all nodes agree on certain messages to be
sync messages. These messages are used to find out the
local clock drift by comparing the expected time of arrival
for that given message to its actual time of arrival (see Fig.
4). There is a special phase at the end of one FlexRay round,
called network idle time (NIT). This time share is used by
all nodes to correct their local clocks.

FlexRay Slot

Message

Actual
Arrival Time

TimeExpected
Arrival Time

Difference = Correction Value

Figure 4: Clock Correction

The FlexRay controller manages the interaction with the
CPU. Two hardware buffers are used to store the data sent
or received via the FlexRay bus. Each buffer is capable of
storing a single message.

With the help of timing information provided by the timer
and a static table (i.e. the bijection mentioned above) the
bus interface either decodes received messages or encodes
messages in order to send them over the FlexRay bus. In
addition, the bus interface is responsible for the synchro-
nization of the timer.

3.4 OSEKtime Layer
OSEK/VDX is an open operating system standard of the

European automotive industry. More than 50 major compa-
nies belong to the Technical Committee Partners, e.g. Volk-
swagen AG, BMW AG, Adam Opel AG, Daimler Chrysler
AG. OSEK is an abbreviation for “Offene Systeme und deren
Schnittstellen für die Elektronik im Kraftfahrzeug”, which
translates to “Open Systems and the Corresponding Inter-
faces for Automotive Electronics” [21].

OSEKtime is a specification for a time-triggered operat-
ing system with a fault-tolerant communication layer as a
standardized run-time environment for highly dependable
real-time software in automotive electronic control units.
The OSEKtime operating system supports static schedul-
ing and offers all basic services for real-time applications,
i.e., interrupt handling, dispatching, system time and clock
synchronization, local message handling, and error detection
mechanisms. It is an extension to the OSEK/VDX standard.

OSEKtime implements the following properties:

• predictability, i.e. the deterministic and a priori known
behavior even under peak load and fault conditions.

• fault tolerance, i.e. versus communication faults.

Since these properties imply static fixed time scheduling, we
have to provide worst case execution times for all applica-
tions and for all operating system routines.

Task execution in OSEKtime is controlled by a real-time
scheduler and a dispatcher table. The scheduler activates
the tasks sequentially corresponding to the entries in the
dispatcher table. One entry in the dispatcher table consists
of the task id, the start time for the task and its maximal
runtime (deadline). One full execution of the whole dis-
patcher table is called one dispatcher round. Since we use
the underlying FlexRay protocol to synchronize the clocks
and to ensure proper cooperation in between FlexRay and
OSEKtime, we demand that the dispatcher round length is
a multiple of the FlexRay round length.

Additionally, there is a privileged idle task. This task
is not listed in the dispatcher table and has neither start
time nor deadline. Whenever there is unused time in one
dispatcher round, the idle task will be dispatched.

The OSEKtime standard comprises a fault-tolerant com-
munication layer, FTCom, which supports real-time bus
protocols as FlexRay. FTCom offers the following services:

• Global Message Handling (including replication and
agreement)

• Time service and optional external clock synchroniza-
tion

FTCom is divided into four layers:

• the application layer, which provides an application
programming interface (API),

• an optional message filtering layer, which will not be
considered in our model,

• the fault tolerant layer, and

• the interaction layer, which provides the services for
the transfer of messages via network.

Communication between FTCom and FlexRay is organized
via a shared memory region inside FTCom, the so-called
ttFT CNI. All messages received via the FlexRay bus are
stored in this memory region. Messages sent by local ap-
plications are stored in the ttFT CNI and then delivered by
FlexRay to all other nodes. Optionally, all messages can be
sent redundantly. The content of ttFT CNI is then defined by
the results of an agreement algorithm (RDA - replica deter-
minate algorithm). We will not make use of any replication
algorithm in our scenario.

Node 1 Node 2 Node 3 Node 4

Mobile
Phone Navigation SensorsAppl.

eCall

Figure 5: System Structure

3.5 Application Layer
At a top level, we have distributed our implementation

of eCall to four independent applications. Each application
runs on an ECU of its own. The communication between
two or more applications is realized via the FTCom layer
and the FlexRay bus.

The eCall application collects all relevant data and, if nec-
essary, initializes the emergency call.

The navigation application sends periodically the current
position of the car (e.g. in GPS format). The coordinates
will be stored by the emergency call application. Such a
design is more stable compared to an emergency call appli-
cation polling the data from the navigation module in case
of a crash, after which the navigation system might have
failed.

The crash sensor sends cyclically the current crash status
of the car. With this parameter, the emergency call appli-
cation can decide, if an emergency call has to be placed or
not.

The mobile phone device provides functions to initialize a
call, send data via the mobile network or close a connection.
The eCall application uses these functions to place the actual
emergency call.

4. MODELING
We are going to model in a bottom-up manner. The low-

est level in the model is built by the logical gates of the
VAMP processor. We will then provide a layer of assembler
machines, called physical machines. This model represents
an assembler programmer’s view on the hardware (see Sect.
4.1). Note that we have chosen the term physical to de-
note that we do not use address translation or other virtual
memory features but operate on a pure physical memory.

Furthermore, we will introduce a new model called com-
municating virtual machines (CVM) in which concurrent
user processes interact with a generic microkernel. The user
tasks and the generic microkernel are written in a subset
of C called C0. We will introduce a formal model of C0
machines which represents these C0 programs. In order to
achieve pervasiveness in our model, we also talk about the
correctness of the compiler translating C0 programs to as-
sembler in Sect. 4.2.

Beneath the usual C functions, the microkernel in Sect. 4.3
can call a special set of functions called CVM primitives
which alter the state of user processes, e.g. copy data be-
tween them. The linking of the generic micro kernel to the
implementations of the CVM primitives leads to the concrete
kernel. Necessarily, this implementation needs to have as-
sembler portions due to the fact that e.g. processor registers
are not visible in the variables of a C program. Therefore
we will extend our C0 semantics in order to deal with these
assembler portions.

In Sect. 4.5 we will show how we instantiate the generic
microkernel from Sect. 4.3 with an OSEKtime-like imple-
mentation. We will introduce the specific system calls and
tasks that are needed to handle the special demands regard-
ing communication between tasks and nodes.

DLXSpec CVM2DLX

V−DLX

DLX−ASM

CVM

COF

Abstraction

In
st

an
tia

tio
n

Figure 6: Model Stack

4.1 Physical Machines
We have described shortly the VAMP processor we use in

Sect. 3.3. Physical machines describe a processor operating
(in our scenario) on physical memory.

4.1.1 Notation
We denote bit vectors by a ∈ {0, 1}n. Bit j of bit vector

a is denoted by a[j]. The concatenation of bit vectors a ∈
{0, 1}n and b ∈ {0, 1}m is denoted by a ◦ b ∈ {0, 1}m+n.

4.1.2 Configuration
A configuration cP of a physical machine has the following

components:

• cP .R ∈ {0, 1}32 for a variety of processor registers
R. We consider here a pipelined architecture with
a delayed branch mechanism which is implemented
by two program counters, cP .DPC ∈ {0, 1}32 and
cP .PCP ∈ {0, 1}32.

• A byte addressable memory cP .m : {0, 1}32 → {0, 1}8.

Computation on the physical machine is modeled by the
function δP that computes a successor configuration c′P for
a given configuration cP . The next state function δP is
defined by the semantics of the instruction set. The physical
machine reads from the memory to fetch instructions and to
execute load instructions, it writes to the memory to execute
store instructions.

4.2 C0 Semantics,C0A Semantics and
Compilation

Since we want to consider several programs (like FlexRay
driver and applications) running under an operating system,
the computations of these programs are interleaved. There-
fore, our compiler correctness statement is based on a small
steps operational semantics. The programming language C
“in its full beauty” has rather complex semantics allowing
an error prone programming style. Although the semantics
of Pascal can be written down in a few pages, we decided
not to use this language. This is due to the fact that C is
the first choice in programming languages when it comes to

industrial usage. Therefore we came up with several restric-
tions (see next section) on C which lead to simple Pascal
like semantics. This subset of C we called C0. In this sec-
tion, we will sketch the formal semantics of C0 and state
the correctness theorem of a C0 compiler. Finally, we will
extend the C0 semantics to in-line assembler code.

4.2.1 C0 Semantics
In C0 types are elementary (bool, int, . . .), pointer types, or

aggregates (array or struct). A type is called simple, if it is
elementary or pointer type. We require that all types includ-
ing pointer types have to be fixed at compile-time. We define
the abstract size of types for simple types t by size(t) = 1,
for arrays by size(t[n]) = n · size(t) and for structures by
size(struct{n1 : t1, . . . , ns : ts}) =

P
i size(ti).

Values of variables of simple types are called simple values.
Variables of aggregate types have aggregate values which are
represented as a flat sequence of simple values.

Variable names and literals are expressions (e). So are
array and struct accesses (e[index], e.name), dereferencing
(∗e) and “address-of” operations (&e). Expressions in C0
do not have side-effects, therefore pointer arithmetic is for-
bidden as well as function calls as part of an expression.

For expressions e and ei we can define statements (de-
noted as s or s′) as (i) memory allocation e = new type,
(ii) while loops while e do s, (iii) assignments e = e′,
(iv) if conditionals if e do s else s′, (v) function returns
return e, (vi) empty statement skip, (vii) sequential com-
position (s; s′) (viii) and last but not least function calls
e = f(e1, . . . , en). We require function bodies to contain
only a single return statement exactly at the end.

All restrictions, which we have introduced, seem to com-
ply with the MISRA guidelines [19] for the use of the C
language in critical systems.

C0 Configuration.A C0 configuration cC0 has the follow-
ing components:

1. The program rest cC0.pr. This is a sequence of C0
statements that is still to be executed.

2. The type table cC0.tt collects information about types
used in the program.

3. The function table cC0.ft contains information about
the functions of a program. It maps function names
f to pairs cC0.ft(f) = (cC0.ft(f).ty, cC0.ft(f).body)
where cC0.ft(f).ty specifies the local variables, the
types of the arguments and the return value of the
function, whereas CC0.ft(f).body specifies the func-
tion body.

4. The recursion depth cC0.rd.

5. The local memory stack cC0.lms. It maps numbers
i ≤ cC0.rd to memory frames. The global memory is
cC0.lms(0). We denote the top local memory frame of
a configuration cC0 by top(cC0) = cC0.lms(cC0.rd).

6. A heap memory cC0.hm.

We simplify a memory frame to a mapping of variable names
to values in this context, since the full definition is out of
scope for this writing.

Due to space restrictions, we cannot give the definition
of the transition function δC0 mapping C0 configurations

cC0 to their successor configurations c′C0 = δC0(cC0). As an
example, we give the partial definition of the function call
semantics.

Assume the program rest in configuration cC0 begins with
a call of function f with parameters e1, . . . , en assigning the
function’s result to variable v, formally cC0.pr =
fcall(f, v, e1, . . . , en); r. In the new program rest, the call
statement is replaced by the body of the function f taken
from the function table. c′C0.pr = cC0.ft(f).body; r and the
recursion depth is incremented by one: c′C0.rd = cC0.rd +
1 and a new memory frame for the local variables of the
function will be initialized.

4.2.2 Compiler Correctness
Compiler correctness is based on a simulation relation

between C0- and physical machines: consis(aba)(cC0, cP).
The relation takes a function aba as a parameter which maps
sub variables S of the C0 machine to their allocated base
addresses aba(cC0, S) in the physical machine. The func-
tion may change during computation (i) if the local memory
changes due to function calls and returns or (ii) if reachable
variables are moved on the heap during garbage collection
(not implemented yet).

Essentially, the simulation relation consists of four condi-
tions:

1. Value consistency v− consis(aba)(cC0, cP) states that
reachable elementary sub variables x have the same
value in the C0 machine and in the physical machine.

2. Pointer consistency p − consis(aba)(cC0, cP) requires
for reachable pointer variables p, which point to a sub
variable y, that the value stored at the allocated ad-
dress of variable p in the physical machine is the allo-
cated base address of y. This induces a subgraph iso-
morphism between the reachable portions of the ab-
stract heap in the C0 and the concrete heap in the
physical machine.

3. Control consistency c− consis(cC0, cP) states that the
delayed PC of the physical machine used to fetch in-
structions points to the start of the translated code of
the program rest cC0.pr of the C0 machine.

4. Code consistency code− consis(cC0, cP) requires that
the compiled code of the C0 program is stored in the
physical machine cP beginning at the code start ad-
dress cstart (note that this implies the forbiddance of
self-modifying code).

The simulation theorem claims that for all C0 machine com-
putations (c0

C0, c
1
C0, . . .) there is a computation (c0

P , c1
P , . . .)

of the physical machine, step numbers (s(0), s(1), . . .) and
a sequence of allocation functions (aba0, aba1, . . .) such that
for all steps i and S = s(i) we have consis(abai)(ci

C0, c
S
P).

For further details see [14].

4.2.3 In-line Assembler Code
As pointed out in Sect. 4.3, operating system kernels nec-

essarily contain assembler code. So we have to extend the
C0 language by a statement of the form asm(u), where u
denotes a sequence of assembler instructions. We call the
resulting language C0A. We put certain restrictions on the
use of in-line assembler code: (i) we reduce the available
instruction set (e.g. no load/store of bytes and halfwords,

relative jumps only), (ii) target addresses of store word in-
structions must be outside the code and data region of the
C0A program or they must be an allocated base address
of the C0A program of type int or unsigned int, (iii) the
last instruction in u must not be a jump or a branch in-
struction, (iv) the execution of u must terminate, (v) jump
and branch targets must be inside of u, (vi) execution of u
must not produce misalignment or illegal interrupts. In-line
assembler parts can modify parts of the physical machine
configurations which are not visible for C0, e.g. the proces-
sor registers. Thus the next state function δC0A needs an
additional parameter, a physical machine. To express the
meaning of assembler code changing the values of C0 vari-
ables, we parametrize δC0A – like the consis relation – with
an allocated base address function aba.

As long as there is no in-line assembler code executed, we
ignore the second input parameter and set the second out-
put parameter to an arbitrary but fixed physical machine
configuration x: δC0A(aba)(ci

C0, c
i
P) = (δC0(c

i
C0), x). The

execution of in-line assembler code makes the definition of
the transition function harder and goes beyond the scope of
this paper. In brief, we construct a corresponding sequence
of C0 computations for the sequence of physical machine
computations representing the execution of the in-line as-
sembler part. If an assembler instruction changes the value
of some C0 variable, we reflect this change in the corre-
sponding C0 configuration, otherwise the C0 configuration
stays unchanged.

4.3 CVM
Communicating Virtual Machines (CVM) are a computa-

tional model for a generic abstract microkernel interacting
with a fixed number of user processes. From a kernel im-
plementor’s point of view, CVM encapsulates the low-level
functionality of a microkernel and provides access to it as
a library of functions, the so-called CVM primitives [10].
Although the CVM model has been developed to support
virtual machines, we will only use physical machines as men-
tioned above.

4.3.1 Configuration
A CVM configuration ccvm has the following components:

• User process physical machines represented by con-
figurations ccvm.up(u) for user process indices u ∈
{1, . . . , P} and fixed P as introduced in Sect. 4.1

• A C0 machine configuration ccvm.ca of the so-called
abstract kernel as seen in Sect. 4.2. This machine must
(i) have a function kdispatch, and (ii) declare certain
functions called CVM primitives, with an empty body,
arguments and effects as described below.

• The component ccvm.cp denotes the current process:
ccvm.cp = 0 means that the kernel is running, while
ccvm.cp = u > 0 means that user process u is run-
ning.

A computation of the CVM machine is parametrized over a
list of external interrupt events eevs, one event mask eeve

with e signals for each user process step (the running kernel
cannot be interrupted). These external interrupt events are,
for example, used to efficiently interact with I/O devices, e.g.
a hard disk or a network card. A mathematical model of a
hard disk and a paper and pencil proof for a low level device
driver can be found in [13].

4.3.2 Computation
In this section we define the next state function δcvm of

the CVM model. It maps the external events list eevs and a
CVM configuration ccvm to its successor configurations c′cvm

and the new external events list eevs′, so δcvm(eevs, ccvm) =
(c′cvm, eevs′).

The next state function of the CVM model distinguishes
two basic cases: (i) If ccvm.cp 6= 0, i.e. the current process is
not the kernel, we have a user computation. (ii) Otherwise,
we have a kernel computation.

In the first case, we check if there is an interrupt, either
internally or with respect to the external events eevs. If no
interrupt has occurred, the next CVM step is just a step
of the corresponding physical machine, i.e. c′cvm.up(u) =
δv(ccvm.cp(u)). If there is an interrupt, we start the execu-
tion of the abstract kernel. kdispatch denotes the function
for the kernel entry point, which we will call with the excep-
tion cause and data. Furthermore, we set the current process
ccvm.cp to 0 and the kernel’s program rest ccvm.ca.pr to the
function call for kdispatch.

Kernel computations start with the call of the function
kdispatch as shown above. There are now two possibilities
of how to go on: (i) The kernel’s program rest does not start
with a call of a CVM primitive. Then we do a regular C0
semantics step: c′cvm.ca = δC0(ccvm.ca) (ii) Otherwise, the
corresponding CVM primitive is called. All kernel computa-
tions have to end with the call of the CVM primitive start,
which hands control over to a specified user process. With
this, the kernel stops execution and is restarted again on the
next interrupt.

Due to restrictions of space we will only describe a few
selected primitives. We ignore any preconditions and corner
cases which are straightforward to specify and resolve.

• The CVM primitive start, taking one argument, hands
control over to the given user process. For ccvm.ca.pr
= fcall(start, v, e1); r and u = va(ccvm.ca, e1), where
va(ccvm.ca, e1) defines the value of variable e1 in the
abstract kernel, we set c′cvm.cp = u. With this defini-
tion the kernel stops execution and is restarted again
on the next interrupt.

• The CVM primitive get vm gpr reads register GPR[r]
of process u. We define get vm gpr(r, u, ccvm.up) =
(ccvm.up(u).GPR[r], ccvm.up).

• The CVM primitive set vm gpr writes register GPR[r]
of process u. We define set vm gpr(r, u, x, ccvm.up) =
(0, c′cvm.up) by c′cvm.up(u).GPR[r] = x.

4.3.3 Concrete Kernels and Implementation
A concrete kernel cc is an implementation of the CVM

model for a given abstract kernel ca. We construct such a
concrete kernel by linking the abstract kernel ca, which is
a C0 program, with a CVM implementation cvm, a C0A

program. Formally we write this by using a link operator ld
as cc = ld(ca, cvm). The new function table of the resulting
program is constructed by the function tables of both pro-
grams. For functions present in both tables, defined func-
tions (with a non-empty body) will take precedence over de-
clared functions (without a body). We will not give a formal
definition of the linking operation; it may only be applied
under certain restrictions, like global variable names of both
programs must be distinct and no function may be defined in

both programs. We require in detail that the abstract ker-
nel ca defines kdispatch and declares all CVM primitives,
while the CVM implementation cvm defines the primitives
and declares kdispatch.

The CVM implementation maintains data structures for
the simulation of the virtual machines and multi processing.
These include (i) an array of process control blocks pcb[u] for
the kernel (u = 0) and the user processes (u > 0). Process
control blocks are structures with components pcb[u].R for
every processor register R of the physical machine. (ii) The
variable cup which encodes the ccvm.cp component. When
the concrete kernel enters system mode, it writes all pro-
cessor registers R to the process control block pcb[cup].R of
the process cup that was interrupted, and then restores the
kernel from process control block pcb[0]. We switch back
to user mode by the start CVM primitive, which is imple-
mented using in line assembler code. The parameter u of
start is assigned to cup, then we save the current kernel
state by writing the physical processor registers to pcb[0].
Last, we restore the physical processor registers for process
u from pcb[u] and execute an rfe (return from exception).

4.4 System Calls
The binary interface of a kernel specifies, how user pro-

cesses can make system calls to the kernel. In our scenario,
a system call number j is invoked by an assembler trap in-
struction with immediate constant j. System calls have ad-
ditional parameters that are taken from the general purpose
registers of the user process. If system call j has n parame-
ters, we pass parameter x, 1 ≤ x ≤ n in register GPR[10+x]
of the calling process. Furthermore, after completion of the
system call, the kernel notifies the user process of the result
of the system call by updating a return value register, e.g.
GPR[20], of the calling process.

In a CVM based kernel like the one here, such a system
call interface is implemented as follows. The kernel main-
tains a variable cu storing the index of the last user process
that has been started. The execution of a trap instruction
with immediate constant j causes an interrupt with index
5 and content j. The kernel detects a system call j called
by process cu and determines the number of parameters n
and a function f that is meant to handle the system call.
By calling the CVM primitive get vm gpr repeatedly for all
parameters 1 ≤ x ≤ n, the actual parameters e1, . . . , en

are determined and then passed to an ordinary C0 function
call fcall(f, r, e1, . . . , en) in the abstract kernel. The return
result is passed back to the user by the set vm gpr CVM
primitive and the user process is reactivated by the start
CVM primitive.

4.5 COF
COF (CVM, OSEKtime, FlexRay) is the next higher level

in our model stack. In this section, we will present how we
instantiate the abstract kernel so that it resembles a OSEK-
time Operating System like kernel. Furthermore, we give a
short description of two devices which we are going to in-
stantiate. We will create three tasks, two of which dedicated
to the communication with the FlexRay bus.

First we instantiate two devices: (i) The timer device is
a simple counter. It can be set to a given value and it will
cause a timer interrupt after the value has been reached.
(ii) The FlexRay controller device represents the FlexRay
hardware and connects to the FlexRay bus.

The abstract kernel introduced in Sect. 4.3 has to be in-
stantiated according to our scenario. This means in detail,
that we have (i) to implement a suitable kdispatch, (ii) to
introduce a new data structure ftcom, and (iii) to introduce
five system calls ttSendMsg, ttRecvMsg, ttTaskDone, and
for interaction with the device ttIOInput and ttIOOutput.
As shown before OSEKtime uses the FTCom for communi-
cation in between tasks. In our model, we add a new data
structure to the abstract kernel, ftmap, which maps mes-
sage IDs to message values.

For kdispatch, the implementation can be quite simple,
since we will only deal with two different kinds of interrupts:
trap and timer.1 The trap interrupt is described in Sect. 4.3
and is used by user tasks to place a system call.

In the case of a timer interrupt, kdispatch will call a func-
tion osekdispatch. This function handles the scheduling as
described in the OSEKtime standard. It interrupts respec-
tively activates the user tasks as described in Sect. 3.4 based
on the dispatcher table. osekdispatch makes use of the timer
device: before scheduling the next task, the timer will be set
to an alarm with the corresponding runtime of this task.

In the case of a trap interrupt, kdispatch will call the
corresponding handler function for this system call:

1. ttSendMsg(msgid, msgval) writes msgval into FT-
Com: ftcom[msgid] = msgval, where msgid is unique
on the operating system layer.

2. ttRecvMsg(msgid, startt) returns the corresponding
content of the FTCom ftcom[msgid] and writes it to
the calling task beginning with address startt.

3. ttTaskDone() tells the kernel, that the current user
process has reached the end of its computation before
its deadline. In such a case, the idle task OSEKidle
will be activated.

4. ttIOInput(id, startd, startt, l) reads l words from de-
vice id starting at address startd and writes them to
the calling task beginning with address startt.

5. ttIOOutput(id, startd, startt, l) writes l words start-
ing at address startt of the calling task to device id
beginning with address startd.

Furthermore, we need three tasks: OSEKidle, FlexRay-
Send, and FlexRayRecv. OSEKidle represents the idle
task as described in Sect. 3.4. It is not contained in the
dispatcher table and will only be activated if a user task has
not used all of its time. FlexRaySend is used to read out
the FTCom layer, putting together the FlexRay messages
(msgid, msgval) and send them to the FlexRay controller
device. FlexRaySend has to be scheduled for the FlexRay
slot corresponding to the msgid and FlexRaySend must
terminate before the slot actually begins. FlexRayReceive
reads the messages from the FlexRay controller device and
writes them to the appropriate positions in the FTCom.
There might come a message in each FlexRay slot, in which
FlexRaySend does not send a message. For all these slots,
FlexRayReceive must be scheduled.

1Note that we have omitted reset, since we do not deal with
the boot-up phase in this paper

FTCom

App FRSend FRRecv

FlexRay

ttR
ec

vM
sg

ttS
en

dM
sg

ttR
ec

vM
sg

ttS
endMsg

ttI
O

In
pu

t

ttI
O

O
ut

pu
t

Figure 7: FlexRay Driver

5. STATUS OF THE FORMAL
VERIFICATION

At the time of this writing a considerable part of the pre-
sented work has been formalized in the theorem prover Is-
abelle/HOL [18].

1. The VAMP processor has been fully formally verified
in the interactive theorem prover PVS. Currently it
is transferred to Isabelle/HOL (implementation and
specification without floating point unit are complete).

2. We have defined a formal semantics for C0 and C0A.

3. We have specified the compiler’s code generator as an
Isabelle/HOL function. Implementation in CO is com-
pleted, parts of it are already verified in Isabelle.

4. Large parts of the compiler simulation theorem have
been verified (expected end of work fall 2005).

5. Data structures and algorithms used in the CVM im-
plementation have been specified and verified.

6. The CVM microkernel semantics have been formally
verified.

7. Functional correctness of the high-level AutoFOCUS
model of eCall has been proven.

6. RELATED WORK
Pervasive verification or system verification, i.e. the ver-

ification of a system containing more than one layer, has
been introduced in [2]. Our approach is the consequent con-
tinuation of the great ideas of these people at that time.
The application to an industrial scenario without setting
too harsh restrictions, e.g. on the programming languages,
is in unison with [17].

Rushby gives an overview of the formal verification of the
Time-Triggered Architecture [24] in [23] and also gives for-
mal correctness proofs for some key algorithms, e.g. a clock
synchronization algorithm based on the Welch-Lynch algo-
rithm [30]. Nevertheless this is isolated work concerning
pervasiveness, though Rushby himself states that “some of
these algorithms pose formidable challenges to current tech-
niques and have been formally verified only in simplified
form or under restricted fault assumptions.”.

Cui Zhang et al. presented techniques for the verifica-
tion of a distributed computing system by layered proofs
[31] in a CLI-like manner. They restrict their model to a
multi-processor environment and implement the two system
calls via atomic assembler instructions also representing the
lowest level in their model.

The most ambitious work on mathematical kernel specifi-
cation comes from Bevier and Smith [3, 4], who have speci-
fied large parts of the kernel configuration and kernel calls of
the Mach kernel in the Boyer-Moore theorem prover. Their
research was targeted at providing a formal specification ac-
companying and making more precise the kernel’s informal
specification. As such, the specification does not provide an
explicit logical memory model or a user computation model
and, hence, no application binary interface. Furthermore,
they only formulate the liveness of kernel calls without defin-
ing the semantics of system calls from the user’s point of
view.

In comparison to Norrish’s work on a C semantics [20], we
have tried to keep our semantics simple without applying too
harsh restrictions on the code writing. In fact, feedback by
our industrial partners actually shows that C0 seems to go
along with most (informal) “good coding procedures” that
exist in the industrial context.

There have been efforts and achievements in verifying a
whole compiler, e.g., the Verifix project implemented and
verified a compiler for Common Lisp [25]. Though most in-
dustrial software – especially operating systems – are written
in C, we consider our choice more applicable.

The verification of the VAMP is – to the best of our knowl-
edge – the largest pervasive hardware verification effort pub-
licized. For fully verified, but simpler microprocessors, see
[29]. McMillan has shown the correctness of a powerful
Tomasulo scheduler with a remarkable degree of automation
[15].

7. SUMMARY AND FURTHER WORK
We have presented an approach on how to model and ver-

ify pervasively a system of industrial relevance. We have
therefore presented a model stack, starting at the hardware
level and going up to the CVM model. In this model the
formalisms for machine language specification and for pro-
gramming language semantics have been combined in a nat-
ural way. We have furthermore outlined how an OSEKtime
operating system like refinement of the microkernel speci-
fied in this model can look like. Up to the level of CVM,
we have formulated the simulation theorems in between the
single layers – at least in paper and pencil style.

Though we have identified the missing layers in our model
stack and we know principally how they should look like, we
still lack a formal description of them and the corresponding
simulation theorems. This is currently work in progress (for
the paper and pencil part) and is expected to be completed
in fall this year. Consecutively, we will start to put this work
into formal Isabelle/HOL theories.

Currently the formal verification of the simulation theo-
rem in between CVM and the hardware in Isabelle/HOL is
work in progress and expected to be complete in 2006.

In order to validate timing properties, e.g. the realizabil-
ity of the OS dispatcher table, we have to know the worst-
case execution times of our implementations. Our industry
partner AbsInt is currently realizing a model of the VAMP
for their tool aiT [1], which we will use for this purpose.

One of our teams is currently designing a FlexRay Con-
troller in Verilog. Formalization and verification of the con-
troller in Isabelle will follow. We aim at presenting a fully
workable demonstrator of our system in the first half of 2006.
Implementation of the software in C0 will start in July, 2005.

The completion of the overall verification efforts is ex-
pected in June 2007.

8. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. aiT

Worst-Case Execution Time Analyzers.
http://www.absint.de/ait/.

[2] W. R. Bevier, W. A. Hunt, Jr., J S. Moore, and W. D.
Young. An approach to systems verification. Journal
of Automated Reasoning, 5(4):411–428, Dec. 1989.

[3] W. R. Bevier and L. M. Smith. A mathematical model
of the mach kernel. Technical Report 102,
Computational Logic, Inc., December 1994.

[4] W. R. Bevier and L. M. Smith. A mathematical model
of the mach kernel: Kernel requests. Technical Report
103, Computational Logic, Inc., December 1994.

[5] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and
W. Paul. Putting it all together — Formal Verification
of the VAMP. STTT Journal, Special Issue on Recent
Advances in Hardware Verification, 2005.

[6] F. Dudenhöffer, M. Krüger, and H. Schmaler.
Ausfall-Sicherheit Fahrzeug-Elektronik. Technical
report, CAR - Center of Automotive Research, 2002.

[7] eSafety. eCall Project. http://europa.eu.int/
information_society/activities/esafety/doc/

esafety_2005/high_level_mtg_3_feb/e_call.pdf,
2004.

[8] EU Commission. eSafety EU Commission Initiative.
http://europa.eu.int/information_society/

activities/esafety/index_en.htm, 2004.

[9] FlexRay Consortium. FlexRay.
http://www.flexray.com/.

[10] M. Gargano, M. Hillebrand, D. Leinenbach, and
W. Paul. On the correctness of operating system
kernels. In J. Hurd and T. Melham, editors, TPHOLs
’05. Springer, 2005.

[11] A. Grzemba. LIN-Bus - Die Technologie. Elektronik
Automotive, April 2003.

[12] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, San Mateo, CA, second edition, 1996.

[13] M. Hillebrand, T. In der Rieden, and W. Paul.
Dealing with I/O devices in the context of pervasive
system verification. In ICCD ’05. IEEE Computer
Society, 2005. To appear.

[14] D. Leinenbach, W. Paul, and E. Petrova. Towards the
formal verification of a C0 compiler: Code generation
and implementation correctness. In 3rd International
Conference on Software Engineering and Formal
Methods (SEFM 2005), 5-9 September 2005, Koblenz,
Germany, 2005. To appear.

[15] K. McMillan. Verification of an implementation of
tomasulo’s algorithm by compositional model
checking. In CAV 98, volume 1427. Springer Verlag,
June 1998.

[16] S. M. Müller and W. J. Paul. Computer Architecture:
Complexity and Correctness. Springer, 2000.

[17] J S. Moore. A grand challenge proposal for formal
methods: A verified stack. In B. K. Aichernig and
T. S. E. Maibaum, editors, 10th Colloquium of
UNU/IIST ’02, pages 161–172. Springer, 2003.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[19] The Motor Industry Software Reliability Association
(MISRA). MISRA-C:2004 Guidelines for the use of
the C language in critical systems. Motor Industry
Research Association (MIRA), Ltd., UK, 2004.

[20] M. Norrish. C formalized in HOL. Technical Report
UCAM-CL-TR-453, University of Cambridge,
Computer Laboratory, 1998.

[21] OSEK group. OSEK/VDX time-triggered operating
system.
http://www.osek-vdx.org/mirror/ttos10.pdf, 2001.

[22] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. In D. Kapur, editor,
11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752, Saratoga, NY,
jun 1992. Springer-Verlag.

[23] J. Rushby. An overview of formal verification for the
time-triggered architecture. In W. Damm and E.-R.
Olderog, editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 2469 of Lecture Notes
in Computer Science, pages 83–105, Oldenburg,
Germany, Sept. 2002. Springer-Verlag.

[24] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz,
and C. Temple. Time-Triggered Architecture (TTA).
In J.-Y. Roger, B. Standford-Smith, and P. T. Kidd,
editors, Advances in Information Technologies: The
Business Challenge (EMMSEC’97). IOS Press, 1999.

[25] The Verifix Consortium. The Verifix Project.
http://www.info.uni-karlsruhe.de/~verifix/,
1995 — 1999.

[26] The Verisoft Consortium. The Verisoft project.
http://www.verisoft.de/, 2003.

[27] The Verisoft Consortium. Subproject 6: Automotive
system. http://www.verisoft.de/SubProject6.html,
2004.

[28] TU München. AutoFOCUS Website.
http://autofocus.informatik.tu-muenchen.de/,
1997.

[29] M. N. Velev and R. E. Bryant. Formal verification of
superscale microprocessors with multicycle munctional
units, exception, and branch prediction. In DAC.
ACM Press, 2000.

[30] J. L. Welch and N. Lynch. A new fault-tolerant
algorithm for clock synchronization. Information and
Communication, 77(1):1–36, April 1988.

[31] C. Zhang, B. R. Becker, D. Peticolas, M. Heckman,
K. Levitt, and R. A. Olsson. Verification of a
distributed computing system by layered proofs. In
Proceedings of the Thirtieth Annual Hawaii
International Conference on System Sciences. IEEE,
1997.

